老男孩教育专注IT教育10余年,只培养IT技术精英

全国免费咨询电话(渠道合作):400-609-2893

8个Python数据清洗代码,拿来即用!老男孩python培训课程

老男孩IT教育

常见问题

2022年1月13日 16:14

数据清洗,并不是一件简单的任务,大多数情况下,这项工作是十分耗时且枯燥、乏味的,但同时,它也是非常重要的,本篇文章整理了8个Python数据清洗的代码,可以让大家更轻松地进行数据清洗工作,请看下文:

       数据清洗,并不是一件简单的任务,大多数情况下,这项工作是十分耗时且枯燥、乏味的,但同时,它也是非常重要的,本篇文章整理了8个Python数据清洗的代码,可以让大家更轻松地进行数据清洗工作,请看下文:

python培训

       1、删除多列数据

def drop_multiple_col(col_names_list, df): 
    '''
    AIM    -> Drop multiple columns based on their column names 

    INPUT  -> List of column names, df

    OUTPUT -> updated df with dropped columns 
    ------
    '''
    df.drop(col_names_list, axis=1, inplace=True)
    return df

       有时,并不是所有列的数据都对我们的数据分析工作有用。因此,「df.drop」可以方便地删掉你选定的列。

       2、转换Dtypes

def change_dtypes(col_int, col_float, df): 
    '''
    AIM    -> Changing dtypes to save memory

    INPUT  -> List of column names (int, float), df

    OUTPUT -> updated df with smaller memory  
    ------
    '''
    df[col_int] = df[col_int].astype('int32')
    df[col_float] = df[col_float].astype('float32')

       当我们面对更大的数据集时,我们需要对「dtypes」进行转换,从而节省内存。

       3、将分类变量转换为数值变量

def convert_cat2num(df):
    # Convert categorical variable to numerical variable
    num_encode = {'col_1' : {'YES':1, 'NO':0},
                  'col_2'  : {'WON':1, 'LOSE':0, 'DRAW':0}}  
    df.replace(num_encode, inplace=True)  

       有一些机器学习模型要求变量是以数值形式存在的。这时,我们就需要将分类变量转换成数值变量然后再将它们作为模型的输入。对于数据可视化任务来说,我建议大家保留分类变量,从而让可视化结果有更明确的解释,便于理解。

       4、检查缺失的数据

def check_missing_data(df):
    # check for any missing data in the df (display in descending order)
    return df.isnull().sum().sort_values(ascending=False)

       如果你想要检查每一列中有多少缺失的数据,这可能是最快的方法。这种方法可以让你更清楚地知道哪些列有更多的缺失数据,帮助你决定接下来在数据清洗和数据分析工作中应该采取怎样的行动。

       5、删除列中的字符串

def remove_col_str(df):
    # remove a portion of string in a dataframe column - col_1
    df['col_1'].replace('\n', '', regex=True, inplace=True)

    # remove all the characters after &# (including &#) for column - col_1
    df['col_1'].replace(' &#.*', '', regex=True, inplace=True)

       有时你可能会看到一行新的字符,或在字符串列中看到一些奇怪的符号。你可以很容易地使用 df['col_1'].replace 来处理该问题,其中「col_1」是数据帧 df 中的一列。

        6、删除列中的空格

def remove_col_white_space(df):
    # remove white space at the beginning of string 
    df[col] = df[col].str.lstrip()

       当数据十分混乱时,很多意想不到的情况都会发生。在字符串的开头有一些空格是很常见的。因此,当你想要删除列中字符串开头的空格时,这种方法很实用。

       7、将两列字符串数据(在一定条件下)拼接起来

def concat_col_str_condition(df):
    # concat 2 columns with strings if the last 3 letters of the first column are 'pil'
    mask = df['col_1'].str.endswith('pil', na=False)
    col_new = df[mask]['col_1'] + df[mask]['col_2']
    col_new.replace('pil', ' ', regex=True, inplace=True)  # replace the 'pil' with emtpy space

       当你希望在一定条件下将两列字符串数据组合在一起时,这种方法很有用。例如,你希望当第一列以某些特定的字母结尾时,将第一列和第二列数据拼接在一起。根据你的需要,还可以在拼接工作完成后将结尾的字母删除掉。

       8、转换时间戳(从字符串类型转换为日期datatime格式)

def convert_str_datetime(df): 
    '''
    AIM    -> Convert datetime(String) to datetime(format we want)

    INPUT  -> df

    OUTPUT -> updated df with new datetime format 
    ------
    '''
    df.insert(loc=2, column='timestamp', value=pd.to_datetime(df.transdate, format='%Y-%m-%d %H:%M:%S.%f'))

       在处理时间序列数据时,你可能会遇到字符串格式的时间戳列。这意味着我们可能不得不将字符串格式的数据转换为根据我们的需求指定的日期「datetime」格式,以便使用这些数据进行有意义的分析和展示。

       关于"8个Python数据清洗代码,拿来即用!"的话题到这里就结束了,老男孩教育是Python培训领域的专家,2012年就开展了Python培训,是行业内较早的Python培训机构,积累了大量的Python培训教学经验,并能全局把控企业用人指标,让学员轻松拿下高薪职位!

  推荐阅读:

       【Python培训班】关于Python的垃圾回收,有哪些需要了解的?

       【Python学习教程】Python语言构造字典的三种方法!

       【Python培训班】人工智能、机器学习、深度学习三者分别是什么技术?

本文经授权发布,不代表老男孩教育立场。如若转载请联系原作者。